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Abstract 

A fast and accurate forward and inverse scattering method has been developed 
and implemented for electromagnetic systems. This method is directly 
applicable for various real-time in-situ tasks. The forward scattering algorithm 
utilizes multipole “perfectly matched layer” boundary conditions as well as a 
complex realization of the permittivity functions of highly lossy materials, 
optimizing both storage and computational requirements. The method combines 
several hybrid components due to the inapplicability of typical inverse methods, 
such as the conjugate gradient method and Hessian matrix inversion; these 
latter methods are inapplicable due to the hyperbolic nature of the Maxwell-
material (MM) equations. Examples of highly structured inverse scattering of 
layered and structured objects that involve up to 23 independent parameters 
are given. The newly developed methodology as described and implemented 
herein is self-contained and can be modified to analyze various electromagnetic 
systems, regardless of scale, size and composition. The new method enables the 
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accurate and efficient capture of effects of a broad variety of materials with 
various kinds of poles in the permittivity function that often occur with highly 
structured complex objects with multi-material lossy coatings. 

1. Introduction 

The quest for real-time in situ inverse scattering of complex two and 
three-dimensional objects composed of lossy materials coatings has been 
a major focus of the radar industry in part as a consequence of the 
developing technology of coating reflecting objects to act as non-reflecting 
ones. Other applications abound in the microchip industry [2] where the 
ever-decreasing scale size limits the applications of current technologies 
for metrology based on electron microscopy. The basic requirement is an 
accurate and sufficiently fast algorithm so that real-time results are 
obtained efficiently. 

A major difficulty in achieving this quest is the hyperbolic nature of 
the Maxwell-material equations that prevents indirect solvers to be 
developed efficiently and accurately. 

The Maxwell-material equation [7] in their differential or integral 
formats have been the fundamental of electromagnetic formulation and 
analysis [8]. The standard differential form is usually given in spacial-
temporal coordinate system, while the integral form can be expressed as 
a single integral equation [9]. Explicitly the differential system is given 
by 

,ρ=⋅∇ D   (1) 

,0=⋅∇ B   (2) 

,HtJE
∂
∂+=×∇   (3) 

.EtH
∂
∂−=×∇   (4) 
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In expressions (1)-(4), HBED ,,,  represent the displacement and 

electric fields, the inductive and magnetic fields and ρ&J  are the 

current and charge density, respectively. However, this form is not 
always the most convenient form to analyze systems of interest. In 
particular, in the case of interest here, the mixed momentum and spacial 
coordinates is preferred. The coordinate system being used in this paper 
is ( )kkk ,,, zyx  with kykx,  representing the Fourier transform 

variables of the spatial variables zyx ,,  is the regular spatial coordinate 

and k is the wave number obtained as the Fourier transform coordinate 
of the time variable t [2]. 

This paper presents the development and implementation of a fast 
and accurate electromagnetic forward and inverse broadband scattering 
algorithms, computing the scattered electromagnetic fields for all desired 
wavelengths simultaneously without sacrificing speed or accuracy. Two 
different inverse transform algorithms are employed. The first method 
involves the use of auxiliary differential equations for partial currents 
and the second method involves cumulative convolutions. The 
combination of these two unconventional techniques allows us to resolve 
the potential difficulty of non-unique solutions, which is a result of the 
classic ill-posedness of inverse problems. In other words, we use the 
availability of two independent methods as a compatibility condition to 
yield a unique solution to the inverse problem. In the forward as well as 
the inverse transforms, the number of layers of the scattering objects is 
unrestricted. 

In all cases, complex lossy materials can be used in which their 
analytical representation is obtained by a hybrid method that involves 
properties using material files that express the refractive index (N) and 
the absorption rate (K) as an explicit function of wavelength (WL) in 
nanometers (nm) or its energy in electron-volts (EV). The scattering 
process is essentially a continuous process requiring continuous 
representation of the material properties, which is usually obtained as 
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tables of N, K, and wavelength (WL). Thus an optimization scheme has 
been developed using a three columns input file and returning an output 
of seven columns expressing the N, K, the real and imaginary reflec-
tivities, the efficiency spectrum, and the corresponding frequency. This 
method expresses each material as a sum of Debye-poles, Lorentz-poles, 
asymmetric Lorentz-poles (X-Lorentz-poles), conductivity term and 
plasma term as described by Lifshitz [4]. This method guarantees that 
causality holds in all cases. The ability to obtain real-time results 
depends on far field-near field transformations and ‘perfectly matched 
layer’ boundary conditions to minimize the computational domain, whose 
limitations are well known (see, e.g., [1], [8] , [5]). 

2. Material Analysis 

A typical material-file is expressed as a table of N and K as function 
of WL. The material properties of significance here are the real and 
imaginary parts of the permittivity and the efficiency spectrum (i.e., 
reflectivity) of a flat material. To obtain these properties for a given 
wavelength is elementary, so that if one wishes to develop numerical 
solutions for the Maxwell-material (MM) equations [7] in the frequency 
domain a standard input file is sufficient. However, the computational 
cost associated with the MM equation per WL is large. If 200 spectral 
points are needed, the equations must be solved 200 times regardless of 
dimensions. Since accuracy depends primarily on the shortest 
wavelength, all equations are solved on the same grid, resulting in a very 
cumbersome and inefficient algorithm. On the other hand, the spatio-
temporal MM equations provide the mechanism to obtain the scattered 
wave as a function of space and time, affording the computation of the 
scattered fields for all wavelengths using a novel non-uniform grid fast 
Fourier transform (FFT). 

The development and implementation of the spatio-temporal MM 
equations requires delicate analysis. The material response to an 
external electromagnetic field is usually expressed in terms of the 
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material polarization vector, which appears as a non-linear convolution 
with the electric field. If the material is also magnetic, a similar term 
involves the convolution of the magnetic permittivity with the magnetic 
field. In other words, to obtain scattering results with arbitrarily dense 
spectra, we must be able to deal with more complicated equations, whose 
entries are not easily available. Indeed, it is necessary to express the 
permittivity function as a continuous and differentiable function of the 
frequency. 

Recently, in [11], [2], it is explained how to do this while complying 
with basic physical principles, such as causality. The method involves 
judicious use of the Lifshitz integral [5], which contains the permittivity 
function via dispersion relations. The result of this analysis is typically 
given in a form where three column input file of WL, N, K is first 
converted to a seven column input file of EV, N, K, RP, IP, Eff, WL, 
where RP, IP, Eff are the real and imaginary parts of the permittivity 
and Eff is the efficiency reflectivity. This detailed input file is inserted 
into the algorithm of inversion, changing the cost function for each 
iteration. The result is a material file specifying the number of poles in 
each term and the values of their corresponding parameters. If one so 
wishes, the methodology employed here can yield uniform machine 
accuracy. 

3. Perfectly Matched Layers 

A method is also developed here for constructing perfectly matched 
layers (PMLs) for finite-difference time-domain (FDTD) computation    
(see [8]) that provides excellent impedance matches across a wide band of 
wavelengths. For both direct and inverse scattering computations, it is 
shown that perfectly matched layers provide the needed absorbed 
reflections over the required wide range of wavelengths, so the 
computational domain may be decreased dramatically providing the 
ability for real-time analysis. 
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The requirement of a PML is that there will be no reflections as the 
wave enters the PML, or crosses from one PML layer to the next, 
whenever Berringer’s transformations of impedance matching condition 
is satisfied [3]. A generalization of Berringer’s approach for single lossy 
poles was introduced in [6]. Explicitly one obtains 

( ) ( ) ,
ω
µ=

+ω

+µ

ω
σ

ω
σ

 id

i
d

d

  (5) 

where ( )ωd  and dσ  refer to the properties of a layer in the PML 

boundary. 

If ( )ω  is a rational function, ( )ωd  will be also, and its structure 

computed. 

At ,0=ω  
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At ,∞=ω  

( ) ( ).∞=∞ d   (8) 

For ,0≠ω  we solve for ( )ωd  and compare pole by pole (we are 

assuming that all poles are simple). If two functions are equal, all of their 
residues will be also 

( ) ( ) .111 d
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d ii σ
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The Lorentz and X-Lorentz poles are at { }
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s
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so the ks  term of the computational domain permittivity is multiplied by 

the factor .1 



 σ

+
s
d

s k
 The 

ks  term is handled similarly. Notice that if the 

term is a Lorentz pole, ka  is purely imaginary, but the above product is 

not. Therefore, the Lorentz pole transforms to an X-Lorentz pole in the 
PML [3]. A detailed discussion of the complex analysis of the various 
poles of the lossy materials is given in detail in a recent publication [11]. 

Since the Debye poles are located at [ ( ) ],, rjiν−ω  their residues are 

given by 
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and so the coefficient of the Debye pole at rjiν−  is multiplied by the factor 

.1 






 σ
+

srj
d
ν

 The analysis for the poles located at 
rjiν−  is analogous to 

analysis of the poles at .rjiν−  
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4. Numerical Methods 

The spatio-temporal MM equations have been widely studied and 
expressed in many forms [9]. Many algorithms have been devised to solve 
these equations for both general and specific purposes [10], with the 
fundamental conflicting issues being accuracy, speed and storage needs. 
Thus, to develop a forward scattering algorithm in two or three- 
dimensions, one has to take these competing requirements into account 
based on end-user needs. A typical formulation of the MM equations is 
involves an integral equation representation, which is particularly 
suitable for accurate solutions [9]. It is also most suitable to handle 
convolutions of permittivity functions with electric and magnetic fields. 
However, these integral equations usually require large storage due to 
fine grids since the system is hyperbolic in nature and much computing 
time since the matrices involved require direct inversions. Since most 
lithographic structures contain a 2SiO  layer ranging from 0.4nm to 1nm 

thickness, a sub -.1nm grid is required to resolve this thin 2SiO  layer. In 

other words, even a 1000nm {times 600nm} 2D simulation requires a 
minimum of 10000 {times 6000} grid points resulting in a long 
computation. To alleviate this difficulty, a number of studies include pre-
computed libraries of forward scattering spectra, employing approximate 
algorithms for limited number of wavelengths, using multi-processors 
computers. 

In this paper, an alternative hybrid method is presented. A 
parameter file is constructed by using the material files discussed above, 
using the various materials accordingly. The substrate can be 
decomposed into as many layers as needed, and the features share this 
property as well. The finest grid is near the circumference of the features, 
as well as at the very thin 2SiO  layers needed. The finest grid used is 

one 15th of the lowest wavelength employed by the end user. In 
particular, the algorithm resolves 1nm with a 20nm grid when the lowest 
wavelength is 300nm. In a homogeneous domain of uniform composition, 
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the grids become coarser without loss of resolution using several non-
uniform grid transforms to obtain the final computational grid. In 2D on 
a 3GHz single processor, the TE and TM polarization spectra are 
computed in 0.2-0.3 sec for as many wavelengths as one wishes. These 
computations are carried out for periodic as well as non-periodic systems 
and are applicable to reflectometry as well as ellipsometry 
measurements. The algorithm discussed here employs a non-uniform grid 
and it is applicable to 3D as well. It has been implemented in ANSI C 
and has been compiled on Solaris, Linux, and Windows operating-
systems, making it suitable for in-situ applications on many widely used 
systems. 

As mentioned earlier, the main motivation for this study is to enable 
non-invasive reliable determination of composition and shapes of nano-
features created during microlithography processing [11]. The ultimate 
goal is the use of inverse scattering to determine the physical structure of 
materials having linear and non-linear permittivity, using an explicit 
FDTD [8] scheme, with updated coefficients for each time step; relatively 
simple applications are given below, while more complex applications will 
described in a third, follow-up paper. Good real-time performance of this 
software necessitates using a minimal computational domain. Since the 
substrate of silicon is huge compared with the size of features of interest 
(mm vs. nm), we use perfectly matched layer technology [1], while taking 
into account its potential pitfalls. The measurements of the reflected 
waves describe both TM and TE polarizations of a broadband spectrum of 
a few hundreds nanometers range. The features are described by using 
connected trapezoidal structures, which can be easily smoothed out by 
using bi-cubic splines. An optimization scheme similar to the one 
reported here is employed, and its most important parameters are the 
uppermost surface and the total height of the features. Each trapezoidal 
structure represents a single or a composite material, thus allowing us to 
obtain the shape and composition of the features [2]. Here, again the 
parameters are restricted as above to avoid the possibility of non-physical 
results as seen in [5] which violates causality. 
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Explicitly one obtains 
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where nv/  is Luebbers’ “recursive accumulator”, the sum of terms of the 

general recursive form given as 
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only summed over all poles: Debye, Lorentz, and X-Lorentz. 
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and for Lorentz poles, the expressions are complex, given explicitly as 
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Only the real part of m
pξ̂  is being used to update the E-field. 

5. Forward and Inverse Scattering 

In Figure 1, the continuous properties of crystalline silicon are given. 
The left figure displays the efficiency spectrum of crystalline silicon slab, 
the middle figure exhibits the continuous N and K as obtained from the 
mentioned optimization algorithm, and the right figure displays the real 
and imaginary parts of the reflected wave from the silicon slab. All 
graphs are continuous functions of the wavelength. 
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Figure 1. Efficiency, real and imaginary permittivity and reflected field 
of crystalline silicon. 
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To illustrate the resolving power of the forward scattering 
methodology presented here, an example of a 10nm pitch of pure silicon 
grating of 500nm depth is given Figure 2, displaying the TM, TE, and 
unpolarized efficiency reflection spectra. 

 

Figure 2. Efficiency spectra (dimensionless) vs. wavelength (in nm) of 
the grating for TM (A), TE (B), and unpolarized (C) fields. 

The difficulties associated with inverse problems are well known, 
particularly for hyperbolic systems such as the MM equations. A general 
analytical and numerical treatment of existence and uniqueness of 
solutions of ill-posed problems is an immense task. However, in applied 
inverse scattering, existence is certain but uniqueness is not. So, one 
must formulate a system with guaranteed existence and examine all 
relevant solution within a narrow range of relevance such as CD control 
and projectile shapes. In most inverse problems, after the various 
compatibility conditions are constructed, partial derivatives with respect 
to the relevant parameters are needed. Numerical differentiation appears 
at first to be the only available tool, leading in some cases to totally 
wrong answers. 
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This paper employs a newly developed and implemented idea, 
bypassing the difficulties of numerical differentiation and non-
uniqueness combined. After the initial guess is introduced, a series of 
coordinate affinic transformations take place, for each of several relevant 
cost functions. Several estimated Hessians are constructed together with 
their conjugate vector sets. The system so constructed is ‘self-taught’ and 
keeps updating itself until it reaches the prescribed tolerance and exits. 
As the Hessians get updated a second tolerance array invokes a second 
inverse algorithm with cubic convergence compared with the slower 
quadratic convergence rate. This split can be imposed at any stage with 
the understanding that the possibility of a non-unique solution will be 
detected as a result of the varying convergence rate. This methodology is 
heavily related to the forward scattering algorithm. It should be noted 
here that not all non-unique solutions are necessarily bad, since the main 
goal is to predict the feature shape and composition. As an example 
consider a trapezium shape described by three trapezia. The upper and 
lower CD and the feature height describe the uniquely, but the other four 
parameters can vary without affecting the final outcome (as long as the 
trapezium shape is preserved). 

Several examples are given below with increasing complexity. In all 
of these examples, there is a common display order, viz., the initial guess, 
the final match and the target feature, which is the desired one. 
Following the feature display, the efficiency spectra of the initial, 
intermediate, final, and target are displayed. In most cases, the spectra 
employed is the unpolarized spectra determined by averaging the TE and 
TM polarizations, which are always computed by the forward scattering 
algorithm. In all examples, here the substrate is composed of four layers. 
These layers are given in ascending order as: (1) silicon substrate, (2) 
gate oxide 2SiO  of 1.4nm thickness, (3) polysilicon of 120nm thickness, 
and (4) ARC SiON of 20nm. The photoresist is allowed to change between 
50nm-350nm. In these example, the substrate layers’ thickness is kept 
fixed while all feature parameters are allowed to vary freely. In Figures   
3 and 4, the case of seven parameters feature is displayed. In Figure 3, 
the initial, final, and target spectra are displayed. As can be clearly seen, 
each target point is matched by the final spectral points, while the initial 
spectrum is distinctly different. In Figure 4, the actual features are 
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exhibited, according to the same order recipe of “first, final, target”. In 
Figures 5-8, a 23-parameter feature is exhibited in the same order. Note 
that although the substrate is not displayed, it is an integral part of all 
computations. 

 

Figure 3. A comparison of the spectra of 7 parameters feature composed 
of three trapezoid, displaying the initial starting spectrum (A), the final 
spectrum (B), and the target spectrum (C). As can be clearly seen, (B) and 
(C) are indistinguishable. 

 

Figure 4. The actual shapes of the features composed of 3 trapezoid       
(7-parameters) of the inverse scattering process. These are the initial (A), 
final (B), and the actual target (C). Note that again (B) and (C) are 
indistinguishable. 
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Figure 5. An inverse-scattering display of the initial (A), intermediate 
(B), final (C), and target (D) of the 23 parameters feature expressed as 11 
trapezoid. Note that again (C) and (D) are indistinguishable. 

 

Figure 6. A plot of the final spectra (dimensionless) vs. wavelength (in 
nm) of the TM polarization (A), TE polarization (B), and the unpolarized 
(C) spectra of the 23 parameters feature. All dimensionless spectra are 
plotted vs. wavelength (in nm). 
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Figure 7. The reflection efficiency spectra of the inverse scattering 
process of the 23 parameters feature. The spectra of the initial (A), 
intermediate (B), final (C), and the target (D) are plotted (dimensionless) 
vs. wavelength (in nm). 

 

Figure 8. A comparison of the final unpolarized effiency spectrum (A) 
with the target efficiency unpolarized spectrum (B). As can be seen, they 
are indistinguishable and agree to machine accuracy. 
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6. Conclusion 

A very fast and accurate forward and inverse scattering algorithms 
as well as complicated lossy material analysis methodology have been 
presented. The speed, accuracy, and flexibility of the system presented 
here, demonstrates its ability to perform in-situ metrology analysis in 
real-time on manufacturing IC lines and electromagnetic problems at 
other scales, such as radar. 
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